Osmotic regulation of estrogen receptor-beta in rat vasopressin and oxytocin neurons.
نویسندگان
چکیده
The vasopressin (VP) magnocellular neurosecretory cells (MNCs) in the supraoptic and paraventricular (PVN) nuclei are regulated by estrogen and exhibit robust expression of estrogen receptor (ER)-beta. In contrast, only approximately 7.5% of oxytocin (OT) MNCs express ER-beta. We examined the osmotic regulation of ER-beta mRNA expression in MNCs using quantitative in situ hybridization histochemistry. Hyper-osmolality induced via 2% hypertonic saline ingestion significantly decreased, whereas sustained hypo-osmolality induced via d-d-arginine VP and liquid diet increased ER-beta mRNA expression in MNCs (p < 0.05). Thus, the expression of ER-beta mRNA correlated inversely with changes in plasma osmolality. Because hyper-osmolality is a potent stimulus for VP and OT release, this suggests an inhibitory role for ER-beta in MNCs. Immunocytochemistry demonstrated that the decrease in ER-beta mRNA was translated into depletion of receptor protein content in hyper-osmotic animals. Numerous MNCs were positive for ER-beta in control animals, but they were virtually devoid of ER-beta-immunoreactivity (IR) in hyper-osmotic animals. The osmotically induced decrease in ER-beta expression was selective for MNCs because ER-beta-IR remained unaltered in PVN parvocellular neurons. Plasma estradiol and testosterone were not correlated with ER-beta mRNA expression after osmotic manipulation, suggesting that ER-beta expression was not driven by ligand availability. Expression of FOS-IR in MNCs with attenuated ER-beta-IR, and the absence of FOS-IR in parvocellular neurons that retain ER-beta-IR suggest a role for neuronal activation in the regulation of ER-beta expression in MNCs. Thus, osmotic modulation of ER-beta expression in MNCs may augment or attenuate an inhibitory effect of gonadal steroids on VP release.
منابع مشابه
Estrogenic Activity of Some Phytoestrogens on Bovine Oxytocin and Thymidine Kinase-ERE Promoter through Estrogen Receptor-α in MDA-MB 231 Cells
Background: Phytoestrogens, a group of plant-derived polyphenolic compounds have recently come into considerable attention due to the increasing information on their potential adverse effects in human health. Some of phytoestrogens show estrogenic activity that may be carcinogenic for human. In the present study, we investigated the transcriptional effects of variety of phytoestrogens ...
متن کاملOsmotic regulation of estrogen receptor-beta expression in magnocellular vasopressin neurons requires lamina terminalis.
Estrogen receptor-beta (ER-beta) expression in rat magnocellular vasopressin (VP) neurons of the supraoptic and paraventricular nuclei (SON and PVN, respectively) becomes undetectable after 72 h of 2% NaCl consumption. To test the hypothesis that osmosensitive mechanisms that originate in the region of the organum vasculosum lamina terminalis (OVLT) control ER-beta expression in the SON and PVN...
متن کاملRole of Estrogen Receptor-β in Regulation of Vasopressin and Oxytocin Release in Vitro.
In rats, the magnocellular neurons that produce vasopressin (VP) and oxytocin (OT) express estrogen receptor-beta (ER-beta). Physiological concentrations of estrogen (E2) inhibit N-methyl-D-aspartate (NMDA)-stimulated VP and OT release from explants of the hypothalamo-neurohypophyseal system (HNS). To determine whether ER-beta mediates inhibition by E2, HNS explants were perifused with and with...
متن کاملVasopressin and oxytocin mRNA regulation in the rat assessed by hybridization with synthetic oligonucleotides.
Vasopressin and oxytocin are nonapeptide hormones that regulate water metabolism and lactation, respectively. To study the regulation of the vasopressin and oxytocin genes at the mRNA level, we constructed a series of synthetic oligonucleotides, from 8 to 15 bases in length, for use in filter-blot hybridization assays (Northern blots) of hypothalamic mRNA levels and for primed synthesis of cDNA...
متن کاملDistribution of androgen receptor immunoreactivity in vasopressin- and oxytocin-immunoreactive neurons in the male rat brain.
Arginine vasopressin-immunoreactive (AVP-ir) neurons in the bed nucleus of stria terminalis (BST) and medial amygdaloid nucleus are very responsive to gonadal hormones. After gonadectomy, these neurons lose their AVP immunoreactivity and stop expressing AVP mRNA. Testosterone treatment reverses these changes, acting via androgen as well as estrogen receptor-mediated mechanisms. Although AVP-ir ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 10 شماره
صفحات -
تاریخ انتشار 2003